Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Text Sanitization Beyond Specific Domains: Zero-Shot Redaction & Substitution with Large Language Models (2311.10785v1)

Published 16 Nov 2023 in cs.CL and cs.LG

Abstract: In the context of information systems, text sanitization techniques are used to identify and remove sensitive data to comply with security and regulatory requirements. Even though many methods for privacy preservation have been proposed, most of them are focused on the detection of entities from specific domains (e.g., credit card numbers, social security numbers), lacking generality and requiring customization for each desirable domain. Moreover, removing words is, in general, a drastic measure, as it can degrade text coherence and contextual information. Less severe measures include substituting a word for a safe alternative, yet it can be challenging to automatically find meaningful substitutions. We present a zero-shot text sanitization technique that detects and substitutes potentially sensitive information using LLMs. Our evaluation shows that our method excels at protecting privacy while maintaining text coherence and contextual information, preserving data utility for downstream tasks.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.