Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simultaneous Synthesis and Verification of Neural Control Barrier Functions through Branch-and-Bound Verification-in-the-loop Training (2311.10438v1)

Published 17 Nov 2023 in eess.SY and cs.SY

Abstract: Control Barrier Functions (CBFs) that provide formal safety guarantees have been widely used for safety-critical systems. However, it is non-trivial to design a CBF. Utilizing neural networks as CBFs has shown great success, but it necessitates their certification as CBFs. In this work, we leverage bound propagation techniques and the Branch-and-Bound scheme to efficiently verify that a neural network satisfies the conditions to be a CBF over the continuous state space. To accelerate training, we further present a framework that embeds the verification scheme into the training loop to synthesize and verify a neural CBF simultaneously. In particular, we employ the verification scheme to identify partitions of the state space that are not guaranteed to satisfy the CBF conditions and expand the training dataset by incorporating additional data from these partitions. The neural network is then optimized using the augmented dataset to meet the CBF conditions. We show that for a non-linear control-affine system, our framework can efficiently certify a neural network as a CBF and render a larger safe set than state-of-the-art neural CBF works. We further employ our learned neural CBF to derive a safe controller to illustrate the practical use of our framework.

Citations (8)

Summary

We haven't generated a summary for this paper yet.