Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Scalable Edge Clustering of Dynamic Graphs via Weighted Line Graphs (2311.10337v1)

Published 17 Nov 2023 in cs.DS, cs.DC, and cs.SI

Abstract: Timestamped relational datasets consisting of records between pairs of entities are ubiquitous in data and network science. For applications like peer-to-peer communication, email, social network interactions, and computer network security, it makes sense to organize these records into groups based on how and when they are occurring. Weighted line graphs offer a natural way to model how records are related in such datasets but for large real-world graph topologies the complexity of building and utilizing the line graph is prohibitive. We present an algorithm to cluster the edges of a dynamic graph via the associated line graph without forming it explicitly. We outline a novel hierarchical dynamic graph edge clustering approach that efficiently breaks massive relational datasets into small sets of edges containing events at various timescales. This is in stark contrast to traditional graph clustering algorithms that prioritize highly connected community structures. Our approach relies on constructing a sufficient subgraph of a weighted line graph and applying a hierarchical agglomerative clustering. This work draws particular inspiration from HDBSCAN. We present a parallel algorithm and show that it is able to break billion-scale dynamic graphs into small sets that correlate in topology and time. The entire clustering process for a graph with $O(10 \text{ billion})$ edges takes just a few minutes of run time on 256 nodes of a distributed compute environment. We argue how the output of the edge clustering is useful for a multitude of data visualization and powerful machine learning tasks, both involving the original massive dynamic graph data and/or the non-relational metadata. Finally, we demonstrate its use on a real-world large-scale directed dynamic graph and describe how it can be extended to dynamic hypergraphs and graphs with unstructured data living on vertices and edges.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube