Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

TransONet: Automatic Segmentation of Vasculature in Computed Tomographic Angiograms Using Deep Learning (2311.10328v1)

Published 17 Nov 2023 in eess.IV, cs.AI, cs.CV, and cs.LG

Abstract: Pathological alterations in the human vascular system underlie many chronic diseases, such as atherosclerosis and aneurysms. However, manually analyzing diagnostic images of the vascular system, such as computed tomographic angiograms (CTAs) is a time-consuming and tedious process. To address this issue, we propose a deep learning model to segment the vascular system in CTA images of patients undergoing surgery for peripheral arterial disease (PAD). Our study focused on accurately segmenting the vascular system (1) from the descending thoracic aorta to the iliac bifurcation and (2) from the descending thoracic aorta to the knees in CTA images using deep learning techniques. Our approach achieved average Dice accuracies of 93.5% and 80.64% in test dataset for (1) and (2), respectively, highlighting its high accuracy and potential clinical utility. These findings demonstrate the use of deep learning techniques as a valuable tool for medical professionals to analyze the health of the vascular system efficiently and accurately. Please visit the GitHub page for this paper at https://github.com/pip-alireza/TransOnet.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com