Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Identifying the Truth of Global Model: A Generic Solution to Defend Against Byzantine and Backdoor Attacks in Federated Learning (full version) (2311.10248v3)

Published 17 Nov 2023 in cs.LG, cs.AI, cs.CR, and cs.DC

Abstract: Federated Learning (FL) enables multiple parties to train machine learning models collaboratively without sharing the raw training data. However, the federated nature of FL enables malicious clients to influence a trained model by injecting error model updates via Byzantine or backdoor attacks. To detect malicious model updates, a typical approach is to measure the distance between each model update and a \textit{ground-truth model update}. To find such \textit{ground-truth model updates}, existing defenses either require a benign root dataset on the server (e.g., FLTrust) or simply use trimmed mean or median as the threshold for clipping (e.g., FLAME). However, such benign root datasets are impractical, and the trimmed mean or median may also eliminate contributions from these underrepresented datasets. In this paper, we propose a generic solution, namely FedTruth, to defend against model poisoning attacks in FL, where the \textit{ground-truth model update} (i.e., the global model update) will be estimated among all the model updates with dynamic aggregation weights. Specifically, FedTruth does not have specific assumptions on the benign or malicious data distribution or access to a benign root dataset. Moreover, FedTruth considers the potential contributions from all benign clients. Our empirical results show that FedTruth can reduce the impacts of poisoned model updates against both Byzantine and backdoor attacks, and is also efficient in large-scale FL systems.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.