Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Data-Driven LQR using Reinforcement Learning and Quadratic Neural Networks (2311.10235v1)

Published 16 Nov 2023 in eess.SY and cs.SY

Abstract: This paper introduces a novel data-driven approach to design a linear quadratic regulator (LQR) using a reinforcement learning (RL) algorithm that does not require a system model. The key contribution is to perform policy iteration (PI) by designing the policy evaluator as a two-layer quadratic neural network (QNN). This network is trained through convex optimization. To the best of our knowledge, this is the first time that a QNN trained through convex optimization is employed as the Q-function approximator (QFA). The main advantage is that the QNN's input-output mapping has an analytical expression as a quadratic form, which can then be used to obtain an analytical expression for policy improvement. This is in stark contrast to the available techniques in the literature that must train a second neural network to obtain policy improvement. The article establishes the convergence of the learning algorithm to the optimal control, provided the system is controllable and one starts from a stabilitzing policy. A quadrotor example demonstrates the effectiveness of the proposed approach.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.