Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Unambiguity and Fewness for Nonuniform Families of Polynomial-Size Nondeterministic Finite Automata (2311.09979v1)

Published 16 Nov 2023 in cs.FL, cs.CC, and cs.CL

Abstract: Nonuniform families of polynomial-size finite automata, which are series of indexed finite automata having polynomially many inner states, are used in the past literature to solve nonuniform families of promise decision problems. Among such nonuniform families of finite automata, we focus our attention, in particular, on the variants of nondeterministic finite automata, which have at most "one" (unambiguous), "polynomially many" (few) accepting computation paths, or unambiguous/few computation paths leading to each fixed configuration. When such machines are limited to make only one-way head moves, we can prove with no unproven hardness assumptions that some of these variants are different in computational power from each other. As for two-way machines restricted to instances of polynomially-bounded length, families of two-way polynomial-size nondeterministic finite automata are equivalent in power to families of polynomial-size unambiguous finite automata.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)