From Pretext to Purpose: Batch-Adaptive Self-Supervised Learning (2311.09974v2)
Abstract: In recent years, self-supervised contrastive learning has emerged as a distinguished paradigm in the artificial intelligence landscape. It facilitates unsupervised feature learning through contrastive delineations at the instance level. However, crafting an effective self-supervised paradigm remains a pivotal challenge within this field. This paper delves into two crucial factors impacting self-supervised contrastive learning-bach size and pretext tasks, and from a data processing standpoint, proposes an adaptive technique of batch fusion. The proposed method, via dimensionality reduction and reconstruction of batch data, enables formerly isolated individual data to partake in intra-batch communication through the Embedding Layer. Moreover, it adaptively amplifies the self-supervised feature encoding capability as the training progresses. We conducted a linear classification test of this method based on the classic contrastive learning framework on ImageNet-1k. The empirical findings illustrate that our approach achieves state-of-the-art performance under equitable comparisons. Benefiting from its "plug-and-play" characteristics, we further explored other contrastive learning methods. On the ImageNet-100, compared to the original performance, the top1 has seen a maximum increase of 1.25%. We suggest that the proposed method may contribute to the advancement of data-driven self-supervised learning research, bringing a fresh perspective to this community.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.