Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Towards Robust Temporal Reasoning of Large Language Models via a Multi-Hop QA Dataset and Pseudo-Instruction Tuning (2311.09821v2)

Published 16 Nov 2023 in cs.CL

Abstract: Knowledge in the real world is being updated constantly. However, it is costly to frequently update LLMs. Therefore, it is crucial for LLMs to understand the concept of temporal knowledge. However, prior works on temporal question answering (TQA) did not emphasize multi-answer and multi-hop types of temporal reasoning. In this paper, we propose a complex temporal question-answering dataset Complex-TR that focuses on multi-answer and multi-hop temporal reasoning. Besides, we also propose a novel data augmentation strategy to improve the complex temporal reasoning capability and robustness of LLMs. We conducted experiments on multiple temporal QA datasets. Experimental results show that our method is able to improve LLMs' performance on temporal QA benchmarks by significant margins. Our code and data are released at: https://github.com/nusnlp/complex-tr.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube