Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

More Samples or More Prompts? Exploring Effective In-Context Sampling for LLM Few-Shot Prompt Engineering (2311.09782v2)

Published 16 Nov 2023 in cs.CL

Abstract: While most existing works on LLM prompting techniques focus only on how to select a better set of data samples inside one single prompt input (In-Context Learning or ICL), why can not we design and leverage multiple prompts together to further improve the LLM's performance? In this work, we propose In-Context Sampling (ICS), a low-resource LLM prompting technique to produce confident predictions by optimizing the construction of multiple ICL prompt inputs. Extensive experiments with three open-source LLMs (FlanT5-XL, Mistral-7B, and Mixtral-8x7B) on four NLI datasets (e-SNLI, Multi-NLI, ANLI, and Contract-NLI) and one QA dataset (CommonsenseQA) illustrate that ICS can consistently enhance LLMs' performance. An in-depth evaluation with three data similarity-based ICS strategies suggests that these strategies can further elevate LLM's performance, which sheds light on a new yet promising future research direction.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.