A Dichotomy Hierarchy Characterizing Linear Time Subgraph Counting in Bounded Degeneracy Graphs (2311.09584v1)
Abstract: Subgraph and homomorphism counting are fundamental algorithmic problems. Given a constant-sized pattern graph $H$ and a large input graph $G$, we wish to count the number of $H$-homomorphisms/subgraphs in $G$. Given the massive sizes of real-world graphs and the practical importance of counting problems, we focus on when (near) linear time algorithms are possible. The seminal work of Chiba-Nishizeki (SICOMP 1985) shows that for bounded degeneracy graphs $G$, clique and $4$-cycle counting can be done linear time. Recent works (Bera et al, SODA 2021, JACM 2022) show a dichotomy theorem characterizing the patterns $H$ for which $H$-homomorphism counting is possible in linear time, for bounded degeneracy inputs $G$. At the other end, Ne\v{s}et\v{r}il and Ossona de Mendez used their deep theory of "sparsity" to define bounded expansion graphs. They prove that, for all $H$, $H$-homomorphism counting can be done in linear time for bounded expansion inputs. What lies between? For a specific $H$, can we characterize input classes where $H$-homomorphism counting is possible in linear time? We discover a hierarchy of dichotomy theorems that precisely answer the above questions. We show the existence of an infinite sequence of graph classes $\mathcal{G}0$ $\supseteq$ $\mathcal{G}_1$ $\supseteq$ ... $\supseteq$ $\mathcal{G}\infty$ where $\mathcal{G}0$ is the class of bounded degeneracy graphs, and $\mathcal{G}\infty$ is the class of bounded expansion graphs. Fix any constant sized pattern graph $H$. Let $LICL(H)$ denote the length of the longest induced cycle in $H$. We prove the following. If $LICL(H) < 3(r+2)$, then $H$-homomorphisms can be counted in linear time for inputs in $\mathcal{G}_r$. If $LICL(H) \geq 3(r+2)$, then $H$-homomorphism counting on inputs from $\mathcal{G}_r$ takes $\Omega(m{1+\gamma})$ time. We prove similar dichotomy theorems for subgraph counting.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.