Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A Dichotomy Hierarchy Characterizing Linear Time Subgraph Counting in Bounded Degeneracy Graphs (2311.09584v1)

Published 16 Nov 2023 in cs.DS and cs.DM

Abstract: Subgraph and homomorphism counting are fundamental algorithmic problems. Given a constant-sized pattern graph $H$ and a large input graph $G$, we wish to count the number of $H$-homomorphisms/subgraphs in $G$. Given the massive sizes of real-world graphs and the practical importance of counting problems, we focus on when (near) linear time algorithms are possible. The seminal work of Chiba-Nishizeki (SICOMP 1985) shows that for bounded degeneracy graphs $G$, clique and $4$-cycle counting can be done linear time. Recent works (Bera et al, SODA 2021, JACM 2022) show a dichotomy theorem characterizing the patterns $H$ for which $H$-homomorphism counting is possible in linear time, for bounded degeneracy inputs $G$. At the other end, Ne\v{s}et\v{r}il and Ossona de Mendez used their deep theory of "sparsity" to define bounded expansion graphs. They prove that, for all $H$, $H$-homomorphism counting can be done in linear time for bounded expansion inputs. What lies between? For a specific $H$, can we characterize input classes where $H$-homomorphism counting is possible in linear time? We discover a hierarchy of dichotomy theorems that precisely answer the above questions. We show the existence of an infinite sequence of graph classes $\mathcal{G}0$ $\supseteq$ $\mathcal{G}_1$ $\supseteq$ ... $\supseteq$ $\mathcal{G}\infty$ where $\mathcal{G}0$ is the class of bounded degeneracy graphs, and $\mathcal{G}\infty$ is the class of bounded expansion graphs. Fix any constant sized pattern graph $H$. Let $LICL(H)$ denote the length of the longest induced cycle in $H$. We prove the following. If $LICL(H) < 3(r+2)$, then $H$-homomorphisms can be counted in linear time for inputs in $\mathcal{G}_r$. If $LICL(H) \geq 3(r+2)$, then $H$-homomorphism counting on inputs from $\mathcal{G}_r$ takes $\Omega(m{1+\gamma})$ time. We prove similar dichotomy theorems for subgraph counting.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.