Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 114 tok/s
Gemini 3.0 Pro 53 tok/s Pro
Gemini 2.5 Flash 132 tok/s Pro
Kimi K2 176 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Temporal-Aware Refinement for Video-based Human Pose and Shape Recovery (2311.09543v1)

Published 16 Nov 2023 in cs.CV

Abstract: Though significant progress in human pose and shape recovery from monocular RGB images has been made in recent years, obtaining 3D human motion with high accuracy and temporal consistency from videos remains challenging. Existing video-based methods tend to reconstruct human motion from global image features, which lack detailed representation capability and limit the reconstruction accuracy. In this paper, we propose a Temporal-Aware Refining Network (TAR), to synchronously explore temporal-aware global and local image features for accurate pose and shape recovery. First, a global transformer encoder is introduced to obtain temporal global features from static feature sequences. Second, a bidirectional ConvGRU network takes the sequence of high-resolution feature maps as input, and outputs temporal local feature maps that maintain high resolution and capture the local motion of the human body. Finally, a recurrent refinement module iteratively updates estimated SMPL parameters by leveraging both global and local temporal information to achieve accurate and smooth results. Extensive experiments demonstrate that our TAR obtains more accurate results than previous state-of-the-art methods on popular benchmarks, i.e., 3DPW, MPI-INF-3DHP, and Human3.6M.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.