Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 124 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

To Translate or Not to Translate: A Systematic Investigation of Translation-Based Cross-Lingual Transfer to Low-Resource Languages (2311.09404v2)

Published 15 Nov 2023 in cs.CL

Abstract: Perfect machine translation (MT) would render cross-lingual transfer (XLT) by means of multilingual LLMs (mLMs) superfluous. Given, on the one hand, the large body of work on improving XLT with mLMs and, on the other hand, recent advances in massively multilingual MT, in this work, we systematically evaluate existing and propose new translation-based XLT approaches for transfer to low-resource languages. We show that all translation-based approaches dramatically outperform zero-shot XLT with mLMs -- with the combination of round-trip translation of the source-language training data and the translation of the target-language test instances at inference -- being generally the most effective. We next show that one can obtain further empirical gains by adding reliable translations to other high-resource languages to the training data. Moreover, we propose an effective translation-based XLT strategy even for languages not supported by the MT system. Finally, we show that model selection for XLT based on target-language validation data obtained with MT outperforms model selection based on the source-language data. We believe our findings warrant a broader inclusion of more robust translation-based baselines in XLT research.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.