Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting Scientific Impact Through Diffusion, Conformity, and Contribution Disentanglement (2311.09262v4)

Published 15 Nov 2023 in cs.SI and cs.AI

Abstract: The scientific impact of academic papers is influenced by intricate factors such as dynamic popularity and inherent contribution. Existing models typically rely on static graphs for citation count estimation, failing to differentiate among its sources. In contrast, we propose distinguishing effects derived from various factors and predicting citation increments as estimated potential impacts within the dynamic context. In this research, we introduce a novel model, DPPDCC, which Disentangles the Potential impacts of Papers into Diffusion, Conformity, and Contribution values. It encodes temporal and structural features within dynamic heterogeneous graphs derived from the citation networks and applies various auxiliary tasks for disentanglement. By emphasizing comparative and co-cited/citing information and aggregating snapshots evolutionarily, DPPDCC captures knowledge flow within the citation network. Afterwards, popularity is outlined by contrasting augmented graphs to extract the essence of citation diffusion and predicting citation accumulation bins for quantitative conformity modeling. Orthogonal constraints ensure distinct modeling of each perspective, preserving the contribution value. To gauge generalization across publication times and replicate the realistic dynamic context, we partition data based on specific time points and retain all samples without strict filtering. Extensive experiments on three datasets validate DPPDCC's superiority over baselines for papers published previously, freshly, and immediately, with further analyses confirming its robustness. Our codes and supplementary materials can be found at https://github.com/ECNU-Text-Computing/DPPDCC.

Summary

We haven't generated a summary for this paper yet.