Papers
Topics
Authors
Recent
Search
2000 character limit reached

Towards Verifiable Text Generation with Symbolic References

Published 15 Nov 2023 in cs.CL, cs.AI, and cs.LG | (2311.09188v2)

Abstract: LLMs are vulnerable to hallucinations, and thus their outputs generally require laborious human verification for high-stakes applications. To this end, we propose symbolically grounded generation (SymGen) as a simple approach for enabling easier manual validation of an LLM's output. SymGen prompts an LLM to interleave its regular output text with explicit symbolic references to fields present in some conditioning data (e.g., a table in JSON format). The references can be used to display the provenance of different spans of text in the generation, reducing the effort required for manual verification. Across a range of data-to-text and question-answering experiments, we find that LLMs are able to directly output text that makes use of accurate symbolic references while maintaining fluency and factuality. In a human study we further find that such annotations can streamline human verification of machine-generated text. Our code will be available at http://symgen.github.io.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.