Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Scalable and Effective Generative Information Retrieval (2311.09134v1)

Published 15 Nov 2023 in cs.IR

Abstract: Recent research has shown that transformer networks can be used as differentiable search indexes by representing each document as a sequences of document ID tokens. These generative retrieval models cast the retrieval problem to a document ID generation problem for each given query. Despite their elegant design, existing generative retrieval models only perform well on artificially-constructed and small-scale collections. This has led to serious skepticism in the research community on their real-world impact. This paper represents an important milestone in generative retrieval research by showing, for the first time, that generative retrieval models can be trained to perform effectively on large-scale standard retrieval benchmarks. For doing so, we propose RIPOR- an optimization framework for generative retrieval that can be adopted by any encoder-decoder architecture. RIPOR is designed based on two often-overlooked fundamental design considerations in generative retrieval. First, given the sequential decoding nature of document ID generation, assigning accurate relevance scores to documents based on the whole document ID sequence is not sufficient. To address this issue, RIPOR introduces a novel prefix-oriented ranking optimization algorithm. Second, initial document IDs should be constructed based on relevance associations between queries and documents, instead of the syntactic and semantic information in the documents. RIPOR addresses this issue using a relevance-based document ID construction approach that quantizes relevance-based representations learned for documents. Evaluation on MSMARCO and TREC Deep Learning Track reveals that RIPOR surpasses state-of-the-art generative retrieval models by a large margin (e.g., 30.5% MRR improvements on MS MARCO Dev Set), and perform better on par with popular dense retrieval models.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube