Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

How Well Do Large Language Models Truly Ground? (2311.09069v2)

Published 15 Nov 2023 in cs.CL and cs.AI

Abstract: To reduce issues like hallucinations and lack of control in LLMs, a common method is to generate responses by grounding on external contexts given as input, known as knowledge-augmented models. However, previous research often narrowly defines "grounding" as just having the correct answer, which does not ensure the reliability of the entire response. To overcome this, we propose a stricter definition of grounding: a model is truly grounded if it (1) fully utilizes the necessary knowledge from the provided context, and (2) stays within the limits of that knowledge. We introduce a new dataset and a grounding metric to evaluate model capability under the definition. We perform experiments across 25 LLMs of different sizes and training methods and provide insights into factors that influence grounding performance. Our findings contribute to a better understanding of how to improve grounding capabilities and suggest an area of improvement toward more reliable and controllable LLM applications.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.