Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

On the Calibration of Multilingual Question Answering LLMs (2311.08669v2)

Published 15 Nov 2023 in cs.CL and cs.LG

Abstract: Multilingual pre-trained LLMs are incredibly effective at Question Answering (QA), a core task in Natural Language Understanding, achieving high accuracies on several multilingual benchmarks. However, little is known about how well their confidences are calibrated. In this paper, we comprehensively benchmark the calibration of several multilingual LLMs (MLLMs) on a variety of QA tasks. We perform extensive experiments, spanning encoder-only, encoder-decoder, and decoder-only QA models (size varying from 110M to 7B parameters) and diverse languages, including both high- and low-resource ones. We study different dimensions of calibration in in-distribution, out-of-distribution, and cross-lingual transfer settings, and investigate strategies to improve it, including post-hoc methods and regularized fine-tuning. For decoder-only LLMs such as LlaMa2, we additionally find that in-context learning improves confidence calibration on multilingual data. We also conduct several ablation experiments to study the effect of language distances, language corpus size, and model size on calibration, and how multilingual models compare with their monolingual counterparts for diverse tasks and languages. Our experiments suggest that the multilingual QA models are poorly calibrated for languages other than English and incorporating a small set of cheaply translated multilingual samples during fine-tuning/calibration effectively enhances the calibration performance.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.