Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Influence maximization in multilayer networks based on adaptive coupling degree (2311.08663v1)

Published 15 Nov 2023 in physics.soc-ph and cs.SI

Abstract: Influence Maximization(IM) aims to identify highly influential nodes to maximize influence spread in a network. Previous research on the IM problem has mainly concentrated on single-layer networks, disregarding the comprehension of the coupling structure that is inherent in multilayer networks. To solve the IM problem in multilayer networks, we first propose an independent cascade model (MIC) in a multilayer network where propagation occurs simultaneously across different layers. Consequently, a heuristic algorithm, i.e., Adaptive Coupling Degree (ACD), which selects seed nodes with high spread influence and a low degree of overlap of influence, is proposed to identify seed nodes for IM in a multilayer network. By conducting experiments based on MIC, we have demonstrated that our proposed method is superior to the baselines in terms of influence spread and time cost in 6 synthetic and 4 real-world multilayer networks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.