Efficient Continual Pre-training for Building Domain Specific Large Language Models (2311.08545v1)
Abstract: LLMs have demonstrated remarkable open-domain capabilities. Traditionally, LLMs tailored for a domain are trained from scratch to excel at handling domain-specific tasks. In this work, we explore an alternative strategy of continual pre-training as a means to develop domain-specific LLMs. We introduce FinPythia-6.9B, developed through domain-adaptive continual pre-training on the financial domain. Continual pre-trained FinPythia showcases consistent improvements on financial tasks over the original foundational model. We further explore simple but effective data selection strategies for continual pre-training. Our data selection strategies outperforms vanilla continual pre-training's performance with just 10% of corpus size and cost, without any degradation on open-domain standard tasks. Our work proposes an alternative solution to building domain-specific LLMs from scratch in a cost-effective manner.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.