Papers
Topics
Authors
Recent
2000 character limit reached

Efficient Continual Pre-training for Building Domain Specific Large Language Models (2311.08545v1)

Published 14 Nov 2023 in cs.CL

Abstract: LLMs have demonstrated remarkable open-domain capabilities. Traditionally, LLMs tailored for a domain are trained from scratch to excel at handling domain-specific tasks. In this work, we explore an alternative strategy of continual pre-training as a means to develop domain-specific LLMs. We introduce FinPythia-6.9B, developed through domain-adaptive continual pre-training on the financial domain. Continual pre-trained FinPythia showcases consistent improvements on financial tasks over the original foundational model. We further explore simple but effective data selection strategies for continual pre-training. Our data selection strategies outperforms vanilla continual pre-training's performance with just 10% of corpus size and cost, without any degradation on open-domain standard tasks. Our work proposes an alternative solution to building domain-specific LLMs from scratch in a cost-effective manner.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.