Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Taxonomy, Semantic Data Schema, and Schema Alignment for Open Data in Urban Building Energy Modeling (2311.08535v1)

Published 14 Nov 2023 in cs.DB

Abstract: Urban Building Energy Modeling (UBEM) is a critical tool to provide quantitative analysis on building decarbonization, sustainability, building-to-grid integration, and renewable energy applications on city, regional, and national scales. Researchers usually use open data as inputs to build and calibrate UBEM. However, open data are from thousands of sources covering various perspectives of weather, building characteristics, etc. Besides, a lack of semantic features of open data further increases the engineering effort to process information to be directly used for UBEM as inputs. In this paper, we first reviewed open data types used for UBEM and developed a taxonomy to categorize open data. Based on that, we further developed a semantic data schema for each open data category to maintain data consistency and improve model automation for UBEM. In a case study, we use three popular open data to show how they can be automatically processed based on the proposed schematic data structure using LLMs. The accurate results generated by LLMs indicate the machine-readability and human-interpretability of the developed semantic data schema.

Citations (2)

Summary

We haven't generated a summary for this paper yet.