Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Taxonomy, Semantic Data Schema, and Schema Alignment for Open Data in Urban Building Energy Modeling (2311.08535v1)

Published 14 Nov 2023 in cs.DB

Abstract: Urban Building Energy Modeling (UBEM) is a critical tool to provide quantitative analysis on building decarbonization, sustainability, building-to-grid integration, and renewable energy applications on city, regional, and national scales. Researchers usually use open data as inputs to build and calibrate UBEM. However, open data are from thousands of sources covering various perspectives of weather, building characteristics, etc. Besides, a lack of semantic features of open data further increases the engineering effort to process information to be directly used for UBEM as inputs. In this paper, we first reviewed open data types used for UBEM and developed a taxonomy to categorize open data. Based on that, we further developed a semantic data schema for each open data category to maintain data consistency and improve model automation for UBEM. In a case study, we use three popular open data to show how they can be automatically processed based on the proposed schematic data structure using LLMs. The accurate results generated by LLMs indicate the machine-readability and human-interpretability of the developed semantic data schema.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.