Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variational Quantum Eigensolver with Constraints (VQEC): Solving Constrained Optimization Problems via VQE (2311.08502v3)

Published 14 Nov 2023 in quant-ph, cs.LG, and math.OC

Abstract: Variational quantum approaches have shown great promise in finding near-optimal solutions to computationally challenging tasks. Nonetheless, enforcing constraints in a disciplined fashion has been largely unexplored. To address this gap, this work proposes a hybrid quantum-classical algorithmic paradigm termed VQEC that extends the celebrated VQE to handle optimization with constraints. As with the standard VQE, the vector of optimization variables is captured by the state of a variational quantum circuit (VQC). To deal with constraints, VQEC optimizes a Lagrangian function classically over both the VQC parameters as well as the dual variables associated with constraints. To comply with the quantum setup, variables are updated via a perturbed primal-dual method leveraging the parameter shift rule. Among a wide gamut of potential applications, we showcase how VQEC can approximately solve quadratically-constrained binary optimization (QCBO) problems, find stochastic binary policies satisfying quadratic constraints on the average and in probability, and solve large-scale linear programs (LP) over the probability simplex. Under an assumption on the error for the VQC to approximate an arbitrary probability mass function (PMF), we provide bounds on the optimality gap attained by a VQC. Numerical tests on a quantum simulator investigate the effect of various parameters and corroborate that VQEC can generate high-quality solutions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Journal on Computing 26, 1484 (1997).
  2. A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm for linear systems of equations, Phys. Rev. Lett. 103, 150502 (2009).
  3. A. M. Childs, R. Kothari, and R. D. Somma, Quantum algorithm for systems of linear equations with exponentially improved dependence on precision, SIAM Journal on Computing 46, 1920 (2017).
  4. J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2, 79 (2018).
  5. O. Simeone, An introduction to quantum machine learning for engineers, Foundations and Trends in Signal Processing 16, 1–223 (2022).
  6. P. Díez-Valle, D. Porras, and J. J. García-Ripoll, Quantum variational optimization: The role of entanglement and problem hardness, Phys. Rev. A 104, 062426 (2021).
  7. C. Gambella and A. Simonetto, Multiblock ADMM heuristics for mixed-binary optimization on classical and quantum computers, IEEE Trans. on Quantum Engineering 1, 1 (2020).
  8. A. Lucas, Ising formulations of many NP problems, Frontiers in Physics 2, 1 (2014).
  9. M. Ohzeki, Breaking limitation of quantum annealer in solving optimization problems under constraints, Scientific reports 10, 1 (2020).
  10. E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate optimization algorithm, arXiv:1411.4028  (2014).
  11. I. Hen and M. S. Sarandy, Driver hamiltonians for constrained optimization in quantum annealing, Phys. Rev. A 93, 062312 (2016).
  12. I. Hen and F. M. Spedalieri, Quantum annealing for constrained optimization, Phys. Rev. Appl. 5, 034007 (2016).
  13. P. Ronagh, B. Woods, and E. Iranmanesh, Solving constrained quadratic binary problems via quantum adiabatic evolution, Quantum Info. Comput. 16, 1029 (2016).
  14. T. Shirai and N. Togawa, Post-processing variational quantum algorithm for constrained combinatorial optimization problems, arXiv:2309.08120  (2023).
  15. S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University Press, New York, NY, 2004).
  16. S. Karimi and P. Ronagh, A subgradient approach for constrained binary optimization via quantum adiabatic evolution, Quantum Info. Process. 16, 185 (2017).
  17. D. Patel, P. J. Coles, and M. M. Wilde, Variational quantum algorithms for semidefinite programming, arXiv:2112.08859  (2021).
  18. S. Gupta, V. Kekatos, and M. Jin, Controlling smart inverters using proxies: A chance-constrained dnn-based approach, IEEE Trans. on Smart Grid 13, 1310 (2022).
  19. H. Uzawa, Iterative methods for concave programming, Studies in linear and nonlinear programming 6, 154 (1958).
  20. M. Kallio and C. H. Rosa, Large-scale convex optimization via saddle point computation, Operations Research 47, 93 (1999).
  21. G. M. Korpelevich, The extragradient method for finding saddle points and other problems, Matecon 12, 747 (1976).
  22. H. Lu and J. Yang, Nearly optimal linear convergence of stochastic primal-dual methods for linear programming, arXiv:2111.05530  (2021).
  23. M. Schuld and F. Petruccione, Machine learning with quantum computers (Springer, Cham, Switzerland, 2021).
  24. A. W. Harrow and J. C. Napp, Low-depth gradient measurements can improve convergence in variational hybrid quantum-classical algorithms, Phys. Rev. Letters 126, 140502 (2021).
  25. I. Y. Zabotin, Subgradient method to find the saddle point of a convex-concave function, Issledovaniya po Prikladnoi Matematike i Informatike 15, 6 (1988).
  26. T.-H. Chang, A. Nedić, and A. Scaglione, Distributed constrained optimization by consensus-based primal-dual perturbation method, IEEE Trans. on Automatic Control 59, 1524 (2014).
  27. G. E. Crooks, Performance of the quantum approximate optimization algorithm on the maximum cut problem, arXiv:1811.08419  (2018).
  28. D-Wave Quantum Inc., Hybrid Solvers for Quadratic Optimization, Tech. Rep. (2022).
  29. X. Wang and I. Davidson, Flexible constrained spectral clustering, in Proc. of the 16th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining (2010) pp. 563–572.
  30. X. Wang, B. Qian, and I. Davidson, On constrained spectral clustering and its applications, Data Mining and knowledge discovery 28, 1 (2014).
  31. C.-Y. Park, M. Kang, and J. Huh, Hardware-efficient ansatz without barren plateaus in any depth, arXiv:2403.04844  (2024).
  32. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT Press, 2016) http://www.deeplearningbook.org.
  33. M. Schuld, R. Sweke, and J. J. Meyer, Effect of data encoding on the expressive power of variational quantum-machine-learning models, Phys. Rev. A 103, 032430 (2021).
  34. Qiskit: An open-source framework for quantum computing (2021).
  35. Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual (2023).
  36. J. Lofberg, Yalmip: A toolbox for modeling and optimization in matlab, in 2004 IEEE Intl. Conf. on Robotics and Automation (2004) pp. 284–289.
  37. S. Sim, P. D. Johnson, and A. Aspuru-Guzik, Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms, Advanced Quantum Technologies 2, 1900070 (2019).
  38. R. T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, NJ, 1970).
  39. It is easy to show that if g1⁢(𝜽)≤g2⁢(𝜽)subscript𝑔1𝜽subscript𝑔2𝜽g_{1}(\bm{\theta})\leq g_{2}(\bm{\theta})italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( bold_italic_θ ) ≤ italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( bold_italic_θ ) for all 𝜽𝜽\bm{\theta}bold_italic_θ, then min𝜽⁡g1⁢(𝜽)≤min𝜽⁡g2⁢(𝜽)subscript𝜽subscript𝑔1𝜽subscript𝜽subscript𝑔2𝜽\min_{\bm{\theta}}g_{1}(\bm{\theta})\leq\min_{\bm{\theta}}g_{2}(\bm{\theta})roman_min start_POSTSUBSCRIPT bold_italic_θ end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( bold_italic_θ ) ≤ roman_min start_POSTSUBSCRIPT bold_italic_θ end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( bold_italic_θ ) and max𝜽⁡g1⁢(𝜽)≤max𝜽⁡g2⁢(𝜽)subscript𝜽subscript𝑔1𝜽subscript𝜽subscript𝑔2𝜽\max_{\bm{\theta}}g_{1}(\bm{\theta})\leq\max_{\bm{\theta}}g_{2}(\bm{\theta})roman_max start_POSTSUBSCRIPT bold_italic_θ end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( bold_italic_θ ) ≤ roman_max start_POSTSUBSCRIPT bold_italic_θ end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( bold_italic_θ ).
  40. D. P. Bertsekas, Nonlinear Programming, 2nd ed. (Athena Scientific, Belmont, MA, 1999).
Citations (1)

Summary

We haven't generated a summary for this paper yet.