Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Uplift Modeling based on Graph Neural Network Combined with Causal Knowledge (2311.08434v1)

Published 14 Nov 2023 in cs.LG, cs.AI, and stat.ML

Abstract: Uplift modeling is a fundamental component of marketing effect modeling, which is commonly employed to evaluate the effects of treatments on outcomes. Through uplift modeling, we can identify the treatment with the greatest benefit. On the other side, we can identify clients who are likely to make favorable decisions in response to a certain treatment. In the past, uplift modeling approaches relied heavily on the difference-in-difference (DID) architecture, paired with a machine learning model as the estimation learner, while neglecting the link and confidential information between features. We proposed a framework based on graph neural networks that combine causal knowledge with an estimate of uplift value. Firstly, we presented a causal representation technique based on CATE (conditional average treatment effect) estimation and adjacency matrix structure learning. Secondly, we suggested a more scalable uplift modeling framework based on graph convolution networks for combining causal knowledge. Our findings demonstrate that this method works effectively for predicting uplift values, with small errors in typical simulated data, and its effectiveness has been verified in actual industry marketing data.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.