Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Automated Fact-Checking in Dialogue: Are Specialized Models Needed? (2311.08195v1)

Published 14 Nov 2023 in cs.CL and cs.AI

Abstract: Prior research has shown that typical fact-checking models for stand-alone claims struggle with claims made in dialogues. As a solution, fine-tuning these models on labelled dialogue data has been proposed. However, creating separate models for each use case is impractical, and we show that fine-tuning models for dialogue results in poor performance on typical fact-checking. To overcome this challenge, we present techniques that allow us to use the same models for both dialogue and typical fact-checking. These mainly focus on retrieval adaptation and transforming conversational inputs so that they can be accurately predicted by models trained on stand-alone claims. We demonstrate that a typical fact-checking model incorporating these techniques is competitive with state-of-the-art models fine-tuned for dialogue, while maintaining its accuracy on stand-alone claims.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.