Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Time-Uniform Confidence Spheres for Means of Random Vectors (2311.08168v5)

Published 14 Nov 2023 in math.ST, cs.IT, math.IT, stat.ME, stat.ML, and stat.TH

Abstract: We study sequential mean estimation in $\mathbb{R}d$. In particular, we derive time-uniform confidence spheres -- confidence sphere sequences (CSSs) -- which contain the mean of random vectors with high probability simultaneously across all sample sizes. Our results include a dimension-free CSS for log-concave random vectors, a dimension-free CSS for sub-Gaussian random vectors, and CSSs for sub-$\psi$ random vectors (which includes sub-gamma, sub-Poisson, and sub-exponential distributions). Many of our results are optimal. For sub-Gaussian distributions we also provide a CSS which tracks a time-varying mean, generalizing Robbins' mixture approach to the multivariate setting. Finally, we provide several CSSs for heavy-tailed random vectors (two moments only). Our bounds hold under a martingale assumption on the mean and do not require that the observations be iid. Our work is based on PAC-Bayesian theory and inspired by an approach of Catoni and Giulini.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.