Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

On the View-and-Channel Aggregation Gain in Integrated Sensing and Edge AI (2311.07986v3)

Published 14 Nov 2023 in cs.IT, eess.SP, and math.IT

Abstract: Sensing and edge AI are two key features of the sixth-generation (6G) mobile networks. Their natural integration, termed Integrated sensing and edge AI (ISEA), is envisioned to automate wide-ranging Internet-of-Tings (IoT) applications. To achieve a high sensing accuracy, multi-view features are uploaded to an edge server for aggregation and inference using an AI model. The view aggregation is realized efficiently using over-the-air computing (AirComp), which also aggregates channels to suppress channel noise. At its nascent stage, ISEA still lacks a characterization of the fundamental performance gains from view-and-channel aggregation, which motivates this work. Our framework leverages a well-established distribution model of multi-view sensing data where the classic Gaussian-mixture model is modified by adding sub-spaces matrices to represent individual sensor observation perspectives. Based on the model, we study the End-to-End sensing (inference) uncertainty, a popular measure of inference accuracy, of the said ISEA system by a novel approach involving designing a scaling-tight uncertainty surrogate function, global discriminant gain, distribution of receive Signal-to-Noise Ratio (SNR), and channel induced discriminant loss. We prove that the E2E sensing uncertainty diminishes at an exponential rate as the number of views/sensors grows, where the rate is proportional to global discriminant gain. Given channel distortion, we further show that the exponential scaling remains with a reduced decay rate related to the channel induced discriminant loss. Furthermore, we benchmark AirComp against equally fast, traditional analog orthogonal access, which reveals a sensing-accuracy crossing point between the schemes, leading to the proposal of adaptive access-mode switching. Last, the insights from our framework are validated by experiments using real-world dataset.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: