Papers
Topics
Authors
Recent
2000 character limit reached

Variational Graph Autoencoder for Heterogeneous Information Networks with Missing and Inaccurate Attributes (2311.07929v3)

Published 14 Nov 2023 in cs.LG and cs.SI

Abstract: Heterogeneous Information Networks (HINs), which consist of various types of nodes and edges, have recently demonstrated excellent performance in graph mining. However, most existing heterogeneous graph neural networks (HGNNs) ignore the problems of missing attributes, inaccurate attributes and scarce labels for nodes, which limits their expressiveness. In this paper, we propose a generative self-supervised model GraMI to address these issues simultaneously. Specifically, GraMI first initializes all the nodes in the graph with a low-dimensional representation matrix. After that, based on the variational graph autoencoder framework, GraMI learns both node-level and attribute-level embeddings in the encoder, which can provide fine-grained semantic information to construct node attributes. In the decoder, GraMI reconstructs both links and attributes. Instead of directly reconstructing raw features for attributed nodes, GraMI generates the initial low-dimensional representation matrix for all the nodes, based on which raw features of attributed nodes are further reconstructed to leverage accurate attributes. In this way, GraMI can not only complete informative features for non-attributed nodes, but rectify inaccurate ones for attributed nodes. Finally, we conduct extensive experiments to show the superiority of GraMI in tackling HINs with missing and inaccurate attributes.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.