Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

VizPut: Insight-Aware Imputation of Incomplete Data for Visualization Recommendation (2311.07926v1)

Published 14 Nov 2023 in cs.DB

Abstract: In insight recommendation systems, obtaining timely and high-quality recommended visual analytics over incomplete data is challenging due to the difficulties in cleaning and processing such data. Failing to address data incompleteness results in diminished recommendation quality, compelling users to impute the incomplete data to a cleaned version through a costly imputation strategy. This paper introduces VizPut scheme, an insight-aware selective imputation technique capable of determining which missing values should be imputed in incomplete data to optimize the effectiveness of recommended visualizations within a specified imputation budget. The VizPut scheme determines the optimal allocation of imputation operations with the objective of achieving maximal effectiveness in recommended visual analytics. We evaluate this approach using real-world datasets, and our experimental results demonstrate that VizPut effectively maximizes the efficacy of recommended visualizations within the user-defined imputation budget.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.