Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On the Analysis of Cross-Lingual Prompt Tuning for Decoder-based Multilingual Model (2311.07820v1)

Published 14 Nov 2023 in cs.CL

Abstract: An exciting advancement in the field of multilingual models is the emergence of autoregressive models with zero- and few-shot capabilities, a phenomenon widely reported in large-scale LLMs. To further improve model adaptation to cross-lingual tasks, another trend is to further fine-tune the LLMs with either full fine-tuning or parameter-efficient tuning. However, the interaction between parameter-efficient fine-tuning (PEFT) and cross-lingual tasks in multilingual autoregressive models has yet to be studied. Specifically, we lack an understanding of the role of linguistic distributions in multilingual models in the effectiveness of token-based prompt tuning. To address this question, we conduct experiments comparing prompt tuning and fine-tuning on the decoder-based multilingual model, XGLM, with four cross-lingual tasks (XNLI, PAWS-X, POS, NER). According to our study, prompt tuning achieves on par or better performance over fine-tuning across all languages while updating at most 0.13\% of the model parameters. Moreover, we empirically show that prompt tuning is more effective in enhancing the performance of low-resource languages than fine-tuning. Our further analysis shows that the phenomenon is related to the tokenization scheme of the multilingual model.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.