Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

ResMGCN: Residual Message Graph Convolution Network for Fast Biomedical Interactions Discovering (2311.07632v2)

Published 13 Nov 2023 in cs.LG, cs.AI, and q-bio.MN

Abstract: Biomedical information graphs are crucial for interaction discovering of biomedical information in modern age, such as identification of multifarious molecular interactions and drug discovery, which attracts increasing interests in biomedicine, bioinformatics, and human healthcare communities. Nowadays, more and more graph neural networks have been proposed to learn the entities of biomedical information and precisely reveal biomedical molecule interactions with state-of-the-art results. These methods remedy the fading of features from a far distance but suffer from remedying such problem at the expensive cost of redundant memory and time. In our paper, we propose a novel Residual Message Graph Convolution Network (ResMGCN) for fast and precise biomedical interaction prediction in a different idea. Specifically, instead of enhancing the message from far nodes, ResMGCN aggregates lower-order information with the next round higher information to guide the node update to obtain a more meaningful node representation. ResMGCN is able to perceive and preserve various messages from the previous layer and high-order information in the current layer with least memory and time cost to obtain informative representations of biomedical entities. We conduct experiments on four biomedical interaction network datasets, including protein-protein, drug-drug, drug-target, and gene-disease interactions, which demonstrates that ResMGCN outperforms previous state-of-the-art models while achieving superb effectiveness on both storage and time.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com