Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Using Natural Language Explanations to Improve Robustness of In-context Learning (2311.07556v2)

Published 13 Nov 2023 in cs.CL

Abstract: Recent studies demonstrated that LLMs can excel in many tasks via in-context learning (ICL). However, recent works show that ICL-prompted models tend to produce inaccurate results when presented with adversarial inputs. In this work, we investigate whether augmenting ICL with natural language explanations (NLEs) improves the robustness of LLMs on adversarial datasets covering natural language inference and paraphrasing identification. We prompt LLMs with a small set of human-generated NLEs to produce further NLEs, yielding more accurate results than both a zero-shot-ICL setting and using only human-generated NLEs. Our results on five popular LLMs (GPT3.5-turbo, Llama2, Vicuna, Zephyr, and Mistral) show that our approach yields over 6% improvement over baseline approaches for eight adversarial datasets: HANS, ISCS, NaN, ST, PICD, PISP, ANLI, and PAWS. Furthermore, previous studies have demonstrated that prompt selection strategies significantly enhance ICL on in-distribution test sets. However, our findings reveal that these strategies do not match the efficacy of our approach for robustness evaluations, resulting in an accuracy drop of 8% compared to the proposed approach.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.