Papers
Topics
Authors
Recent
2000 character limit reached

Context-Aware Adaptive Prefetching for DASH Streaming over 5G Networks (2311.07399v1)

Published 13 Nov 2023 in cs.NI and cs.MM

Abstract: The increasing consumption of video streams and the demand for higher-quality content drive the evolution of telecommunication networks and the development of new network accelerators to boost media delivery while optimizing network usage. Multi-access Edge Computing (MEC) enables the possibility to enforce media delivery by deploying caching instances at the network edge, close to the Radio Access Network (RAN). Thus, the content can be prefetched and served from the MEC host, reducing network traffic and increasing the Quality of Service (QoS) and the Quality of Experience (QoE). This paper proposes a novel mechanism to prefetch Dynamic Adaptive Streaming over HTTP (DASH) streams at the MEC, employing a Machine Learning (ML) classification model to select the media segments to prefetch. The model is trained with media session metrics to improve the forecasts with application layer information. The proposal is tested with Mobile Network Operators (MNOs)' 5G MEC and RAN and compared with other strategies by assessing cache and player's performance metrics.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.