Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Context-Aware Adaptive Prefetching for DASH Streaming over 5G Networks (2311.07399v1)

Published 13 Nov 2023 in cs.NI and cs.MM

Abstract: The increasing consumption of video streams and the demand for higher-quality content drive the evolution of telecommunication networks and the development of new network accelerators to boost media delivery while optimizing network usage. Multi-access Edge Computing (MEC) enables the possibility to enforce media delivery by deploying caching instances at the network edge, close to the Radio Access Network (RAN). Thus, the content can be prefetched and served from the MEC host, reducing network traffic and increasing the Quality of Service (QoS) and the Quality of Experience (QoE). This paper proposes a novel mechanism to prefetch Dynamic Adaptive Streaming over HTTP (DASH) streams at the MEC, employing a Machine Learning (ML) classification model to select the media segments to prefetch. The model is trained with media session metrics to improve the forecasts with application layer information. The proposal is tested with Mobile Network Operators (MNOs)' 5G MEC and RAN and compared with other strategies by assessing cache and player's performance metrics.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.