Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Connecting the Dots: Graph Neural Network Powered Ensemble and Classification of Medical Images (2311.07321v1)

Published 13 Nov 2023 in cs.CV

Abstract: Deep learning models have demonstrated remarkable results for various computer vision tasks, including the realm of medical imaging. However, their application in the medical domain is limited due to the requirement for large amounts of training data, which can be both challenging and expensive to obtain. To mitigate this, pre-trained models have been fine-tuned on domain-specific data, but such an approach can suffer from inductive biases. Furthermore, deep learning models struggle to learn the relationship between spatially distant features and their importance, as convolution operations treat all pixels equally. Pioneering a novel solution to this challenge, we employ the Image Foresting Transform to optimally segment images into superpixels. These superpixels are subsequently transformed into graph-structured data, enabling the proficient extraction of features and modeling of relationships using Graph Neural Networks (GNNs). Our method harnesses an ensemble of three distinct GNN architectures to boost its robustness. In our evaluations targeting pneumonia classification, our methodology surpassed prevailing Deep Neural Networks (DNNs) in performance, all while drastically cutting down on the parameter count. This not only trims down the expenses tied to data but also accelerates training and minimizes bias. Consequently, our proposition offers a sturdy, economically viable, and scalable strategy for medical image classification, significantly diminishing dependency on extensive training data sets.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.