Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 42 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

VerityMath: Advancing Mathematical Reasoning by Self-Verification Through Unit Consistency (2311.07172v2)

Published 13 Nov 2023 in cs.CL and cs.PL

Abstract: LLMs, combined with program-based solving techniques, are increasingly demonstrating proficiency in mathematical reasoning. For example, closed-source models such as OpenAI GPT-4 and Claude show excellent results in solving math word problems. However, progress in math word problem-solving for open-source LLMs is limited, and the challenges these models face are not well-studied. In this paper, we study the performance of strong open-source LLMs, including Llama 2 (7B), Code Llama (7B), and Mistral (7B) on math word problems using program-based solving techniques. Specifically, we analyze the outputs of these models when applied to math word problems and identify a category of problems that pose a significant challenge, particularly those involving quantities spanning multiple units. To address this issue, we propose a systematic approach by defining the units for each quantity and ensuring the consistency of these units during mathematical operations. We developed Unit Consistency Programs (UCPs), an annotated dataset of math word problems, each paired with programs containing unit specifications and unit verification routines. We fine-tuned Llama 2 (7B), Code Llama (7B), and Mistral (7B) models with UCPs to produce theirVerityMath variants. Our findings indicate that our approach, which incorporates unit consistency, currently slightly underperforms compared to an approach that does not. To understand the reasons behind this, we conduct an in-depth error analysis and suggest options for future improvements. Our code and dataset are available at https://github.com/vernontoh/VerityMath.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: