Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 149 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On non-approximability of zero loss global ${\mathcal L}^2$ minimizers by gradient descent in Deep Learning (2311.07065v3)

Published 13 Nov 2023 in cs.LG, cs.AI, math-ph, math.MP, math.OC, and stat.ML

Abstract: We analyze geometric aspects of the gradient descent algorithm in Deep Learning (DL), and give a detailed discussion of the circumstance that in underparametrized DL networks, zero loss minimization can generically not be attained. As a consequence, we conclude that the distribution of training inputs must necessarily be non-generic in order to produce zero loss minimizers, both for the method constructed in [Chen-Munoz Ewald 2023, 2024], or for gradient descent Chen 2025.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.