Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Robust Numerical Scheme for Solving Riesz-Tempered Fractional Reaction-Diffusion Equations (2311.06738v1)

Published 12 Nov 2023 in math.NA and cs.NA

Abstract: The Fractional Diffusion Equation (FDE) is a mathematical model that describes anomalous transport phenomena characterized by non-local and long-range dependencies which deviate from the traditional behavior of diffusion. Solving this equation numerically is challenging due to the need to discretize complicated integral operators which increase the computational costs. These complexities are exacerbated by nonlinear source terms, nonsmooth data and irregular domains. In this study, we propose a second order Exponential Time Differencing Finite Element Method (ETD-RDP-FEM) to efficiently solve nonlinear FDE, posed in irregular domains. This approach discretizes matrix exponentials using a rational function with real and distinct poles, resulting in an L-stable scheme that damps spurious oscillations caused by non-smooth initial data. The method is shown to outperform existing second-order methods for FDEs with a higher accuracy and faster computational time.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.