Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The Distributed Complexity of Locally Checkable Labeling Problems Beyond Paths and Trees (2311.06726v1)

Published 12 Nov 2023 in cs.DC and cs.DS

Abstract: We consider locally checkable labeling LCL problems in the LOCAL model of distributed computing. Since 2016, there has been a substantial body of work examining the possible complexities of LCL problems. For example, it has been established that there are no LCL problems exhibiting deterministic complexities falling between $\omega(\log* n)$ and $o(\log n)$. This line of inquiry has yielded a wealth of algorithmic techniques and insights that are useful for algorithm designers. While the complexity landscape of LCL problems on general graphs, trees, and paths is now well understood, graph classes beyond these three cases remain largely unexplored. Indeed, recent research trends have shifted towards a fine-grained study of special instances within the domains of paths and trees. In this paper, we generalize the line of research on characterizing the complexity landscape of LCL problems to a much broader range of graph classes. We propose a conjecture that characterizes the complexity landscape of LCL problems for an arbitrary class of graphs that is closed under minors, and we prove a part of the conjecture. Some highlights of our findings are as follows. 1. We establish a simple characterization of the minor-closed graph classes sharing the same deterministic complexity landscape as paths, where $O(1)$, $\Theta(\log* n)$, and $\Theta(n)$ are the only possible complexity classes. 2. It is natural to conjecture that any minor-closed graph class shares the same complexity landscape as trees if and only if the graph class has bounded treewidth and unbounded pathwidth. We prove the "only if" part of the conjecture. 3. In addition to the well-known complexity landscapes for paths, trees, and general graphs, there are infinitely many different complexity landscapes among minor-closed graph classes.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)