Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Agnostic Membership Query Learning with Nontrivial Savings: New Results, Techniques (2311.06690v1)

Published 11 Nov 2023 in cs.LG, cs.CC, and stat.ML

Abstract: (Abridged) Designing computationally efficient algorithms in the agnostic learning model (Haussler, 1992; Kearns et al., 1994) is notoriously difficult. In this work, we consider agnostic learning with membership queries for touchstone classes at the frontier of agnostic learning, with a focus on how much computation can be saved over the trivial runtime of 2n$. This approach is inspired by and continues the study of ``learning with nontrivial savings'' (Servedio and Tan, 2017). To this end, we establish multiple agnostic learning algorithms, highlighted by: 1. An agnostic learning algorithm for circuits consisting of a sublinear number of gates, which can each be any function computable by a sublogarithmic degree k polynomial threshold function (the depth of the circuit is bounded only by size). This algorithm runs in time 2{n -s(n)} for s(n) \approx n/(k+1), and learns over the uniform distribution over unlabelled examples on {0,1}n. 2. An agnostic learning algorithm for circuits consisting of a sublinear number of gates, where each can be any function computable by a \sym+ circuit of subexponential size and sublogarithmic degree k. This algorithm runs in time 2{n-s(n)} for s(n) \approx n/(k+1), and learns over distributions of unlabelled examples that are products of k+1 arbitrary and unknown distributions, each over {0,1}{n/(k+1)} (assume without loss of generality that k+1 divides n).

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.