Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Sparse Attention-Based Neural Networks for Code Classification (2311.06575v1)

Published 11 Nov 2023 in cs.PL and cs.LG

Abstract: Categorizing source codes accurately and efficiently is a challenging problem in real-world programming education platform management. In recent years, model-based approaches utilizing abstract syntax trees (ASTs) have been widely applied to code classification tasks. We introduce an approach named the Sparse Attention-based neural network for Code Classification (SACC) in this paper. The approach involves two main steps: In the first step, source code undergoes syntax parsing and preprocessing. The generated abstract syntax tree is split into sequences of subtrees and then encoded using a recursive neural network to obtain a high-dimensional representation. This step simultaneously considers both the logical structure and lexical level information contained within the code. In the second step, the encoded sequences of subtrees are fed into a Transformer model that incorporates sparse attention mechanisms for the purpose of classification. This method efficiently reduces the computational cost of the self-attention mechanisms, thus improving the training speed while preserving effectiveness. Our work introduces a carefully designed sparse attention pattern that is specifically designed to meet the unique needs of code classification tasks. This design helps reduce the influence of redundant information and enhances the overall performance of the model. Finally, we also deal with problems in previous related research, which include issues like incomplete classification labels and a small dataset size. We annotated the CodeNet dataset with algorithm-related labeling categories, which contains a significantly large amount of data. Extensive comparative experimental results demonstrate the effectiveness and efficiency of SACC for the code classification tasks.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.