Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Trichotomy for Transductive Online Learning (2311.06428v2)

Published 10 Nov 2023 in cs.LG

Abstract: We present new upper and lower bounds on the number of learner mistakes in the `transductive' online learning setting of Ben-David, Kushilevitz and Mansour (1997). This setting is similar to standard online learning, except that the adversary fixes a sequence of instances $x_1,\dots,x_n$ to be labeled at the start of the game, and this sequence is known to the learner. Qualitatively, we prove a trichotomy, stating that the minimal number of mistakes made by the learner as $n$ grows can take only one of precisely three possible values: $n$, $\Theta\left(\log (n)\right)$, or $\Theta(1)$. Furthermore, this behavior is determined by a combination of the VC dimension and the Littlestone dimension. Quantitatively, we show a variety of bounds relating the number of mistakes to well-known combinatorial dimensions. In particular, we improve the known lower bound on the constant in the $\Theta(1)$ case from $\Omega\left(\sqrt{\log(d)}\right)$ to $\Omega(\log(d))$ where $d$ is the Littlestone dimension. Finally, we extend our results to cover multiclass classification and the agnostic setting.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.