Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

A Comparison of Lexicon-Based and ML-Based Sentiment Analysis: Are There Outlier Words? (2311.06221v1)

Published 10 Nov 2023 in cs.CL

Abstract: Lexicon-based approaches to sentiment analysis of text are based on each word or lexical entry having a pre-defined weight indicating its sentiment polarity. These are usually manually assigned but the accuracy of these when compared against machine leaning based approaches to computing sentiment, are not known. It may be that there are lexical entries whose sentiment values cause a lexicon-based approach to give results which are very different to a machine learning approach. In this paper we compute sentiment for more than 150,000 English language texts drawn from 4 domains using the Hedonometer, a lexicon-based technique and Azure, a contemporary machine-learning based approach which is part of the Azure Cognitive Services family of APIs which is easy to use. We model differences in sentiment scores between approaches for documents in each domain using a regression and analyse the independent variables (Hedonometer lexical entries) as indicators of each word's importance and contribution to the score differences. Our findings are that the importance of a word depends on the domain and there are no standout lexical entries which systematically cause differences in sentiment scores.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube