Search-Based Fairness Testing: An Overview (2311.06175v1)
Abstract: AI has demonstrated remarkable capabilities in domains such as recruitment, finance, healthcare, and the judiciary. However, biases in AI systems raise ethical and societal concerns, emphasizing the need for effective fairness testing methods. This paper reviews current research on fairness testing, particularly its application through search-based testing. Our analysis highlights progress and identifies areas of improvement in addressing AI systems biases. Future research should focus on leveraging established search-based testing methodologies for fairness testing.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.