Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning-Based Biharmonic Augmentation for Point Cloud Classification (2311.06070v1)

Published 10 Nov 2023 in cs.CV

Abstract: Point cloud datasets often suffer from inadequate sample sizes in comparison to image datasets, making data augmentation challenging. While traditional methods, like rigid transformations and scaling, have limited potential in increasing dataset diversity due to their constraints on altering individual sample shapes, we introduce the Biharmonic Augmentation (BA) method. BA is a novel and efficient data augmentation technique that diversifies point cloud data by imposing smooth non-rigid deformations on existing 3D structures. This approach calculates biharmonic coordinates for the deformation function and learns diverse deformation prototypes. Utilizing a CoefNet, our method predicts coefficients to amalgamate these prototypes, ensuring comprehensive deformation. Moreover, we present AdvTune, an advanced online augmentation system that integrates adversarial training. This system synergistically refines the CoefNet and the classification network, facilitating the automated creation of adaptive shape deformations contingent on the learner status. Comprehensive experimental analysis validates the superiority of Biharmonic Augmentation, showcasing notable performance improvements over prevailing point cloud augmentation techniques across varied network designs.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.