Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Lidar-based Norwegian tree species detection using deep learning (2311.06066v1)

Published 10 Nov 2023 in cs.CV and eess.IV

Abstract: Background: The mapping of tree species within Norwegian forests is a time-consuming process, involving forest associations relying on manual labeling by experts. The process can involve both aerial imagery, personal familiarity, or on-scene references, and remote sensing data. The state-of-the-art methods usually use high resolution aerial imagery with semantic segmentation methods. Methods: We present a deep learning based tree species classification model utilizing only lidar (Light Detection And Ranging) data. The lidar images are segmented into four classes (Norway Spruce, Scots Pine, Birch, background) with a U-Net based network. The model is trained with focal loss over partial weak labels. A major benefit of the approach is that both the lidar imagery and the base map for the labels have free and open access. Results: Our tree species classification model achieves a macro-averaged F1 score of 0.70 on an independent validation with National Forest Inventory (NFI) in-situ sample plots. That is close to, but below the performance of aerial, or aerial and lidar combined models.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.