Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Wi-Fi Signal-Based Human Activity Recognition Using High-Dimensional Factor Models (2311.05921v1)

Published 10 Nov 2023 in eess.SY and cs.SY

Abstract: Passive sensing techniques based on Wi-Fi signals have emerged as a promising technology in advanced wireless communication systems due to their widespread application and cost-effectiveness. However, the proliferation of low-cost Internet of Things (IoT) devices has led to dense network deployments, resulting in increased levels of noise and interference in Wi-Fi environments. This, in turn, leads to noisy and redundant Channel State Information (CSI) data. As a consequence, the accuracy of human activity recognition based on Wi-Fi signals is compromised. To address this issue, we propose a novel CSI data signal extraction method. We established a human activity recognition system based on the Intel 5300 network interface cards (NICs) and collected a dataset containing six categories of human activities. Using our approach, signals extracted from the CSI data serve as inputs to ML classification algorithms to evaluate classification performance. In comparison to ML methods based on Principal Component Analysis (PCA), our proposed High-Dimensional Factor Model (HDFM) method improves recognition accuracy by 6.8%.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.