Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 89 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

YOLOv5s-BC: An improved YOLOv5s-based method for real-time apple detection (2311.05811v1)

Published 10 Nov 2023 in eess.IV

Abstract: To address the issues associated with the existing algorithms for the current apple detection, this study proposes an improved YOLOv5s-based method, named YOLOv5s-BC, for real-time apple detection, in which a series of modifications have been introduced. Firstly, a coordinate attention (CA) block has been incorporated into the backbone module to construct a new backbone network. Secondly, the original concatenation operation has been replaced with a bidirectional feature pyramid network (BiFPN) in the neck module. Lastly, a new detection head has been added to the head module, enabling the detection of smaller and more distant targets within the field of view of the robot. The proposed YOLOv5s-BC model was compared to several target detection algorithms, including YOLOv5s, YOLOv4, YOLOv3, SSD, Faster R-CNN (ResNet50), and Faster R-CNN (VGG), with significant improvements of 4.6%, 3.6%, 20.48%, 23.22%, 15.27%, and 15.59% in mAP, respectively. The detection accuracy of the proposed model is also greatly enhanced over the original YOLOv5s model. The model boasts an average detection speed of 0.018 seconds per image, and the weight size is only 16.7 Mb with 4.7 Mb smaller than that of YOLOv8s, meeting the real-time requirements for the picking robot. Furthermore, according to the heat map, our proposed model can focus more on and learn the high-level features of the target apples, and recognize the smaller target apples better than the original YOLOv5s model. Then, in other apple orchard tests, the model can detect the pickable apples in real time and correctly, illustrating a decent generalization ability.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.