Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A near-optimal zero-free disk for the Ising model (2311.05574v2)

Published 9 Nov 2023 in math.CO, cs.DM, cs.DS, math-ph, and math.MP

Abstract: The partition function of the Ising model of a graph $G=(V,E)$ is defined as $Z_{\text{Ising}}(G;b)=\sum_{\sigma:V\to {0,1}} b{m(\sigma)}$, where $m(\sigma)$ denotes the number of edges $e={u,v}$ such that $\sigma(u)=\sigma(v)$. We show that for any positive integer $\Delta$ and any graph $G$ of maximum degree at most $\Delta$, $Z_{\text{Ising}}(G;b)\neq 0$ for all $b\in \mathbb{C}$ satisfying $|\frac{b-1}{b+1}| \leq \frac{1-o_\Delta(1)}{\Delta-1}$ (where $o_\Delta(1) \to 0$ as $\Delta\to \infty$). This is optimal in the sense that $\tfrac{1-o_\Delta(1)}{\Delta-1}$ cannot be replaced by $\tfrac{c}{\Delta-1}$ for any constant $c > 1$ subject to a complexity theoretic assumption. To prove our result we use a standard reformulation of the partition function of the Ising model as the generating function of even sets. We establish a zero-free disk for this generating function inspired by techniques from statistical physics on partition functions of a polymer models. Our approach is quite general and we discuss extensions of it to a certain types of polymer models.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets