Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Robust Retraining-free GAN Fingerprinting via Personalized Normalization (2311.05478v1)

Published 9 Nov 2023 in cs.CV and eess.IV

Abstract: In recent years, there has been significant growth in the commercial applications of generative models, licensed and distributed by model developers to users, who in turn use them to offer services. In this scenario, there is a need to track and identify the responsible user in the presence of a violation of the license agreement or any kind of malicious usage. Although there are methods enabling Generative Adversarial Networks (GANs) to include invisible watermarks in the images they produce, generating a model with a different watermark, referred to as a fingerprint, for each user is time- and resource-consuming due to the need to retrain the model to include the desired fingerprint. In this paper, we propose a retraining-free GAN fingerprinting method that allows model developers to easily generate model copies with the same functionality but different fingerprints. The generator is modified by inserting additional Personalized Normalization (PN) layers whose parameters (scaling and bias) are generated by two dedicated shallow networks (ParamGen Nets) taking the fingerprint as input. A watermark decoder is trained simultaneously to extract the fingerprint from the generated images. The proposed method can embed different fingerprints inside the GAN by just changing the input of the ParamGen Nets and performing a feedforward pass, without finetuning or retraining. The performance of the proposed method in terms of robustness against both model-level and image-level attacks is also superior to the state-of-the-art.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.