Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The Sample Complexity Of ERMs In Stochastic Convex Optimization (2311.05398v1)

Published 9 Nov 2023 in cs.LG and stat.ML

Abstract: Stochastic convex optimization is one of the most well-studied models for learning in modern machine learning. Nevertheless, a central fundamental question in this setup remained unresolved: "How many data points must be observed so that any empirical risk minimizer (ERM) shows good performance on the true population?" This question was proposed by Feldman (2016), who proved that $\Omega(\frac{d}{\epsilon}+\frac{1}{\epsilon2})$ data points are necessary (where $d$ is the dimension and $\epsilon>0$ is the accuracy parameter). Proving an $\omega(\frac{d}{\epsilon}+\frac{1}{\epsilon2})$ lower bound was left as an open problem. In this work we show that in fact $\tilde{O}(\frac{d}{\epsilon}+\frac{1}{\epsilon2})$ data points are also sufficient. This settles the question and yields a new separation between ERMs and uniform convergence. This sample complexity holds for the classical setup of learning bounded convex Lipschitz functions over the Euclidean unit ball. We further generalize the result and show that a similar upper bound holds for all symmetric convex bodies. The general bound is composed of two terms: (i) a term of the form $\tilde{O}(\frac{d}{\epsilon})$ with an inverse-linear dependence on the accuracy parameter, and (ii) a term that depends on the statistical complexity of the class of $\textit{linear}$ functions (captured by the Rademacher complexity). The proof builds a mechanism for controlling the behavior of stochastic convex optimization problems.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube