Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Improving Hand Recognition in Uncontrolled and Uncooperative Environments using Multiple Spatial Transformers and Loss Functions (2311.05383v1)

Published 9 Nov 2023 in cs.CV

Abstract: The prevalence of smartphone and consumer camera has led to more evidence in the form of digital images, which are mostly taken in uncontrolled and uncooperative environments. In these images, criminals likely hide or cover their faces while their hands are observable in some cases, creating a challenging use case for forensic investigation. Many existing hand-based recognition methods perform well for hand images collected in controlled environments with user cooperation. However, their performance deteriorates significantly in uncontrolled and uncooperative environments. A recent work has exposed the potential of hand recognition in these environments. However, only the palmar regions were considered, and the recognition performance is still far from satisfactory. To improve the recognition accuracy, an algorithm integrating a multi-spatial transformer network (MSTN) and multiple loss functions is proposed to fully utilize information in full hand images. MSTN is firstly employed to localize the palms and fingers and estimate the alignment parameters. Then, the aligned images are further fed into pretrained convolutional neural networks, where features are extracted. Finally, a training scheme with multiple loss functions is used to train the network end-to-end. To demonstrate the effectiveness of the proposed algorithm, the trained model is evaluated on NTU-PI-v1 database and six benchmark databases from different domains. Experimental results show that the proposed algorithm performs significantly better than the existing methods in these uncontrolled and uncooperative environments and has good generalization capabilities to samples from different domains.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.